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ABSTRACT. A comparative study on the post-
processing of experimental modal data from a Sfull scale
steel stringer bridge for damage identification is
presented. The bridge was tested before and after
removal of one of the bearing plates at one abutment.
Frequency Response Functions, measured at different
spatial locations, are used to post-process the data
using a Complex Mode hdicator Function(CMIF)
algorithm. Dynamic properties of the bridge show major
differences between the two cases. In addition, modal
fexibility of the bridge is calculated Jor the measured
degrees of freedom. Modal flexibility of the bridge
shows good agreement with static instrumentation
results under truck loading. The induced damage is
successfully quantified for this loading case. The
“after-removal” condition data was also post-processed
at  Los Alamos National Laboratory using the
Eigensystem Realization Algorithm (ERA) in order to
provide a distant check and correlation for the results.
This paper briefly describes the two different
algorithms and presents the results in both modal and
Aexibility space. Further, the principal focus of this
paper is the postprocessing algorithms and one
damage index, although a number of different damage
identification indices are being used Sor varying levels

and types of damage as part of the ongoing research
project.
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1. INTRODUCTION

Experimental study of structural vibration contributes
to the understanding and control of structural system
behavior. Experimental modal analysis can be
described as the process of determining the modal
parameters (frequencies, damping factors, modal
vectors, and modal scaling) of a linear, time invariant
system using an experimental approach. Traditionally,
the main objectives for experimental modal analysis
were to determine the nature and extent of vibration
response levels and to verify and correct theoretical
models and predictions [1]. Today, different
engineering disciplines use this method for a number
of applications. System  identification  (more
specifically, structural identification) based on modal
analysis and testing has been successfully utilized by
various researchers [2,3].

Structural identification techniques incorporating
modal parameters can yield good results for analytical
or experimental cases where all external conditions
are controlled. For civil engineering structures which



have scattered system characteristics and are subject
to changing environmental conditions, both testing
and post-processing of the modal data require a
modified strategy. Linearity, reciprocity, stationarity
and observability, which are the basic assumptions of
modal analysis, can be difficult to satisfy for actual
civil engineering structures as compared to structural
systems under controlled laboratory conditions. The
effects that disturb these basic assumptions, and
improved testing techniques to counteract these
effects, are presented in the experimental counterpart
to this paper [4]. Improved post-processing
techniques, associated computations, and the results
in modal and flexibility spaces, are described in this
paper.

In April 1995, researchers from the University of
Cincinnati Infrastructure Institute began testing a 3-
span steel stringer bridge located in Cincinnati (HAM-
561-0683). This bridge, which serves as the research
test specimen, is being subjected to a sequence of
induced damages. The progress of this research has
been presented to a peer review panel consisting of
expert researchers from different universities,
research institutes, and laboratories. The panel
meetings are held intermittently as part of the
progress of the research. In this context, it was
requested that researchers from Los Alamos National
Laboratory analyze and post-process one set of modal
data. The two data sets taken before and after the
removal of one bearing plate, the analysis and post-
processing of this data done at the University of
Cincinnati, and the results of the removal case from
Los Alamos National Laboratory are discussed,

2. COMPLEX MODE INDICATOR FUNCTION

Multiple Reference Impact Testing(MRIT) was used as
a testing procedure, for modal testing of the Seymour
bridge (HAM-561-0683). The multiple reference
testing procedure measures data from a large number
of reference positions, thereby increasing the spatial
information in the data set, which is useful for
uncoupling closely-spaced modes of the system.
However, the type of structures typically tested with
MRIT and the conditions under which the testing is
conducted often tend to create particular difficulties in
extracting reliable modal parameters from the
measurements. This is true for the Seymour bridge.
In general, on bridge type structures the response of
the structure is influenced by ambient conditions.

The eigenvalues and eigenvectors vary with
temperature and soil conditions. Most of the
commercially available maultiple reference modal

parameter estimation algorithms are based upon
consistent data, as a result, using these algorithms it

Indicator Function (CMIF).

becomes difficult to sort out the computational modes
from the system modes. Most of the commercial
algorithms, particularly the time domain algorithms, it
is necessary to over specify the expected number of
algorithms in order to get good fits to the data. In
order, to reduce or to eliminate this problem a
specialized frequency domain parameter estimation
algorithm was developed where it is not necessary to
over specify the number of modes.

The method is referred to as the Complex Mode
The CMIF method is a
spatial domain method where the eigenvectors are
estimated directly by using Singular Values
Decomposition (SVD) of the measured Frequency
Response Function (FRF) matrix. A plot of the
Singular Values (SV) of the FRF matrix (CMIF Plot) is
used to determine the location and number of
eigenvalues in a data set. Peaks in the CMIF plot are
locations of the eigenvalues. Tracking the SV’s and
picking off the peaks is the operator interaction
necessary. At the peaks the SV vector (CMIF vector) is
the best least squares estimate of the eigenvector for
the selected peak. The CMIF vector is used as a
spatial filter to compute an Enhanced Frequency
Response Function (EFRF) from weighted average of
the FRF matrix. The resulting EFRF in the vicinity of
the selected peak the EFRF looks like the FRF
measured on a Single-Degree-of-Freedom (SDOF)
system. A simple SDOF estimation algorithm can be
used to estimate the eigenvalue (frequency and
damping) and the modal scale factor.

For cases with a large number of references the
spatial averaging does an excellent job of isolating
each individual eigenvalue-eigenvector pair. A more
detailed description of the CMIF can be found in a
number of excellent references [5,6,7,8]. As a result,
of this study an enhanced CMIF procedure has been
developed to handle cases where the EFRF’s do not
show a SDOF behavior [9].

3. POST-PROCESSING STRATEGY AND QUALITY
CONTROL ISSUES

Quality control and post-processing are interrelated,
inseparable issues. The quality control measures are
explained in detail in the experimental counterpart to
this paper. In this paper, the post-processing strategy
and basic quality control issues are presented.

The major component of post-processing is the
parameter estimation, which is conducted in several
stages. First, an estimate of the number of modes in
the frequency range of interest is made. CMIF is an
appropriate method for use with multi-reference data
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which may contain repeated, or nearly repeated,
complex modes, as in our case. CMIF can be applied
to the entire frequency band of interest or to specific
parts of it. Post-processing at UCII is conducted using
the X-MODAL Modal Analysis package developed at
the University of Cincinnati Structural Dynamics
Research Laboratory (UC-SDRL) [10]. The poles can be
selected from the screen once the number and
location of the poles are identified. After residue
calculation, curve-fit plots, and animation of the
individual modes, Modal Assurance Criterion (MAC)
computations are the quality control of the results in
the modal space. Curve-fit plots show how well the
measured and the reconstructed model correlate.
Animation of the individual modes indicate if any
anomaly in the extracted modes exists. Any
discontinuous motion or out-of-phase problems can
be detected at this stage. The proportional
damping/normal mode assumption requires the
phase between measurement points to be either O or
180 degrees. Visual verification via animation is a
good way to check the results of these assumptions.
The final quality control step is conducted in the
flexibility space. Modal flexibility is calculated from
the modal parameters and is loaded with uniform load
to check the initial deflected shapes to see whether
deflected surface under uniform load is acceptable.
Irrelevant deflected shapes are indications of
anomalies of the data in the flexibility space due to
reasons such as missing modes, computational
modes, or bad data. The basic steps in post-
processing the experimental data are summarized in
Figure 1.
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Figure 1: Post-Processing Strategy
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4. MODAL FLEXIBILITY COMPUTATION AND ITS
APPLICATION TO BRIDGE DATA

The concept of flexibility was first introduced by
Maxwell in 1864, and can be described as follows: The
displacement influence coefficients comprise the
inverse of the flexibility matrix, which is the stiffness
matrix of the system. Although most physical
structures are continuous, their behavior can usually
be represented by a discrete parameter model. The
idealized elements that describe this kind of a system
are mass, stiffness, and damping of the system.
Flexibility, as a system property, has a significant
importance to understanding the structural behavior,

Previous researches have shown that modal flexibility
can be derived from modal parameters obtained from
modal tests. Flexibility has been proposed as a
reliable signature reflecting the existing condition of
bridges. Flexibility can be derived from the
experimental modal data, and can, therefore, be used
directly to check the absolute difference between two
sets of modal data from two modal tests taken at two
different  bridge inspection times [3]. The
transformation of the natural frequencies and mode
shapes to the unit load flexibility matrix is given by
the expression:
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or can be written more explicitly as:

2‘1’ (f)¢ @)

where

ko . .
¢"(7) = the modal vector coefficient at the i-th
measurement point of the k-th unit mass-
normalized mode vector;

f,j = the flexibility coefficient at the i-th point

under the unit load at point j;
w, = the  i-th radian

i

(radian/second)

frequency

The formulations derived above are based on the unit-
mass-normalized vectors. However, the real life
structures cannot always be approximated as being
proportionally damped. In this paper, a more general
computation method is presented which can be
applied for real normal modes or complex mode cases.
The general mathematical derivation of a multi-degree
of freedom system is expressed using Newton’s
second law as;
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The Laplace transform of this equation, assuming all
initial conditions are zero, yields:

[ M1+ AC1+ K] (X (5} = (F ()}
Let:

[B()]=[s*[M]+CT+[K]|

then we can rewrite the above equation as;
[BO] {X ()} = {F(s)}

where [B(s)] is referred to as the system impedance
matrix or just the system matrix. The transfer matrix
can then be formulated as:

[B)™ = [H(s)]
Then the following equality can be defined:
[H] {F(9)} = {X(s)}

The Frequency Response Function is the transfer
function evaluated along the frequency axis.

[H(S)]szja) = [H(CU)]

Frequency response functions then can be defined
from the system characteristics as follows:

[-0*[M]+ jo[C1+[K]" = [H(w)]

A frequency response function can be given in partial
fraction form as follows:

2 (4,), (4,
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Modal flexibility matrix can then be computed in
terms of the identified modal parameters of the
structure evaluated at jw=0 as:
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The general formulation given above is independent of
the normal mode assumption or unit mass normalized
vectors. However, this formula is an approximation of
a real flexibility matrix because of the truncated
number of modes obtainable in practice. Modal
truncation effect should be minimized with an
appropriate number of identified experimental modes.
It is necessary to study the truncation effect of the
modal number in the above formula, as the mode
number obtained from experiment is always limited.
Therefore, the modal truncation effects are
investigated under different load cases, and Load
Dependent Modal Flexibility Convergence (LMC) plots
are generated in order to have a quick check for the
truncation effects for the included number of modes.
The LMC plots can be defined as follows.

Let us assume m modes are identified from the post-
processed data. For m different modes, m different
modal flexibility matrices can be obtained, each time
adding one higher mode to the flexibility matrix. The
deflections at each DOF for a particular load pattern
can be computed by loading these m different modal
flexibility matrices. Finally, m deflected shapes are
obtained for 1,2,...m modes included in the flexibility
matrix. The sum of the squares of the differences of
deflection values at each degree of freedom is obtained
when a new mode is added to the flexibility matrix.
Figure 2 shows the convergence of the modal
flexibility for an incremental mode case.

Load Dependant Modal Flexibility Convergence Plot (Unit
Load Pattern}
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Figure 2 : LMC Plot for Unit Load
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Figure 3 : LMC Plot for Unit Load

In Figure 3, the same procedure is applied; however,
the comparison made to m modes included case.
Since the differences of the deflected shapes at each
measurement degree of freedom for the same modal
flexibility matrix itself is zero, the final value in the
second figure is zero. The number of modes where
each curve begins to converge on zero is an indication
of the sufficient number of modes needed in the
modal flexibility matrix for that particular loading.
Figures 2 and 3 show the modal truncation effect for a
uniformly loaded girder. As can be seen, the modal
truncation effects decrease considerably within the
first 31 Hz where 14 modes are identified for the
bearing removal case.

5. COMPARISON OF TWO TESTS--BEFORE AND
AFTER DAMAGE

In order to demonstrate and validate the experimental
and analytical tools described in this and preceding
papers, the test bridge was subjected to different
types and levels of damage. The damage scenarios are
intended to simulate typical deterioration and damage
which may affect the proper functioning and
anticipated serviceability and load capacity of steel
stringer bridges. Simulations of these damage
scenarios have been accomplished in collaboration
with ODOT, FHWA, and private consulting engineers,
Both before and after damage is induced to the
bridge, modal and truck load tests are conducted and
the results are evaluated. One of the damage
scenarios which will be presented in this paper is the
removal of one bearing plate of a girder from one
abutment There are six girders total at each
abutment. Two tests, one before and one after removal
of the bearing plates, were conducted. The results will
be analyzed in two spaces: Modal
Flexibility Space.

Space and

5.1 COMPARISON IN MODAL SPACE

After conducting the two tests, the data from the test
bridge is transferred to the UCII lab via modem
connection. Post-processing of the data was carried
out with X-MODAL software, utilizing the CMIF
(Complex Mode Indicator Function) algorithm for
preliminary pole location, curve-fitting, scaling, and
normalization. Frequency, damping, modal vectors,
and the scaling coefficients are obtained. According to
the preliminary modal truncation study, at least 10
modes are required to minimize the modal truncation
effects. Thirteen modes were extracted from the first
32 Hz bandwidth. In this bandwidth, the data quality
was observed to be high and the poles were consistent
from test to test. Peaks are selected from the CMIF
plot. One important consideration here is to be careful
not to pick cross-eigenvalues. Mode tracking is
utilized in order to assist in the selection of the valid
peaks. Mode tracking is used to determine the range
of influence of the modes and detect cross-eigenvalue
points. The CMIF plot was decomposed into SDOF
modes, which makes it easier to detect correct poles.
The CMIF plot and the selected poles are given in
Figure 4. In the first 32 Hz band, 13 modes were
extracted for the undamaged case.

CMIF Plot for Test Before Removal of Bearing
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Figure 4 : Complex Mode Indicator Function

After removal of the damage, another impact test was
conducted and the data was post-processed in the
same manner. From the CMIF plot given in Figure 5,
it can be observed that the same modes were
identified with an additional local mode around 25 Hz.
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The animated shapes of the modes show that local
modes in the vicinity of damage are greatly affected by
the damage. The additional mode at 24.98 Hz is
observed to be a local bending mode in the north span
where the damage was induced. The local modes in
the north span show some change which lead to low
MAC values between these modes before and after
damage, whereas the other modes have high MAC
values. The list of frequencies and the MAC values
before and after damage is given in Table 1.

Table 1: Frequency and MAC Comparison of Two Tests

Before Removal After Removal
8/31/1996 Test 9/10/1996 Test
Mode No. Frequency (Hz) | MAC Frequency (Hz)
1 713 0.998 714
2 8.06 0.997 8.06
3 8.48 0.985 8.52
4 11.65 0.989 11.44
S 1271 0.993 12.67
| 6 16.57 0.936 15.12
7 16.27 0.992 _16.27
8 20.46 0.998 203
9 2265 0.657 21.92
10 24.06 0.999 24.03
11 - - 24.98
12 28.64 0.844 28.52
13 29.48 0.908 29.08
14 31.15 0.981 30.99

In Figure 6, the local modes affected by the damage
can be seen. The bearing is removed from the north
end of Girder 3. The mode shape comparison of the
twa tests from the two inner girders is indicative of the
location of the damage.
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Figure 6 : Mode Shape Comparison
5.2 COMPARISON IN FLEXIBILITY SPACE

Flexibility has been proposed as a reliable signature
reflecting the existing condition of bridges. Flexibility
also provides a conceptual, quantitative, and damage-
sensitive index for condition assessment of bridges. It
can also be used to obtain the deflected shapes of a
bridge under any loading pattern. The dynamic
characteristics of the bridge identified via post-
processing the measured FRF’s are used to compute
the modal flexibility as described in the previous
sections.

In order to overcome the non-stationarity due to the
environmental conditions, inner and outer girder tests
were conducted separately, with 6 common
input/output points which were used to splice inner
and outer girder tests. Considering the inner girder
test itself, the modal flexibility matrix will not include
the cross-terms for the unmeasured DOFs. However,
a specific load pattern can be utilized that will
eliminate this drawback. For this reason, unit loading
is defined as loading girders one at a time. This
loading pattern is independent of the number of
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points measured/tested, as long as the girder under
consideration is tested with the same number of
points between different tests to be compared. The
deflected shape of a particular girder under unit
loading defines the condition of the girder. Any
discrepancy between the results of different tests is
indicative of a change. Figure 7. summarizes the unit
loading concept schematically.
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Figure 7 : Bridge Girder Condition Indicator

The before-and-after tests are compared in the same
manner. The damage is successfully identified from
the after removal test results when compared to the
before removal case as shown in Figure 8.

Bridge Girder Condition Indicator for Girder Line 3
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Figure 8 : BGCI for Girder 3 Before and After Damage

The change in stiffness of the bridge is identified with
the Bridge Girder Condition Indicator. However, this
brings up the question of whether all the major modes
are captured, and if the scaling of the modal flexibility
is good enough to simulate real load application, how
reliable are the results of the modal test? Here, a finite
element model (FEM) can be used. The measured
modes can be compared to FEM modes. However,

calibrated or updated models are not easy to obtain,
and in order to calibrate the model, experimental
results should be utilized. Another effective way of
checking the results of the modal analysis is to
conduct diagnostic testing. Diagnostic testing, such as
a truck load test, does not provide the state
parameters found by modal analysis because of
practical limitations associated with these tests.
Diagnostic tests, however, are an independent
experimental tool which can be used to corroborate
the global modal test results. Two diagnostic tests
were conducted by instrumenting the bridge with
displacement and strain transducers. Two trucks with
known wheel loads were positioned in different
configurations while the corresponding global
displacements and local strains were measured. The
tests were conducted both before and after removal of
the bearing plate. The truck load data were applied to
modal flexibility obtained from modal analysis. The
results show very good correlation. The correlation is
also an indication that the scaling is correct and the
modal truncation effect is not significant. Figures 9
and 10 show the deflection values measured and
simulated on the modal flexibility.

Correlating Modal Test and Truck Load Measurement
for Girder Line 3 (Baseline Test)
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Figure 9 : Truck Load Before Damage
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Correlating Modal Test and Truck Load Measurement
for Girder Line 3 {(After Removal of Bearing)
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Figure 10 : Truck Load After Damage

6. ANALYSIS OF AFTER REMOVAL DATA AT LOS
ALAMOS NATIONAL LABORATORY

The analysis procedure used to process the modal
data for the bearing removal case will be described.
The modal frequencies, modal damping ratios, and
mode shapes were obtained from the data using an
Eigensystem Realization Algorithm (ERA)-based curve
fitting procedure. A statistical Monte Carlo analysis
was also used to verify the quality of the modes by
measuring their robustness to realistic levels of noise
on the frequency response data. The resulting real
modes were mass-normalized so that they were
suitable for use in flexibility analysis.

6.1 PRE-CURVE FIT ANALYSIS

The first step in the analysis of the data is to
determine the approximate number of modes to be fit.
This number is determined using the Multivariate
Mode Indicator Function (MIF) [11] and the Complex
Mede Indicator Function (CMIF). In this analysis, the
CMIF and MIF were computed, and then zoomed to
frequency bands of 10 Hz at a time. Approximately 13
modes of significant strength were located between O
Hz and 40 Hz by inspection of the CMIF and MIF. The
approximate frequencies taken from this inspection
appear in Table 2, along with which function located
them. Most of these modes appeared consistently
among the two indicators.

Table 2: Mode Indicator Function

Mode Est. Freq. (Hz) |Found in MIF? Found in CMIF?
1 7.2 Y Y
2 8.1 Y Y
3 11.6 Y Y
4 12.4 N Y
5 12.7 Y Y
6 15.1 Y Y
7 16.2 Y Y
8 20.3 Y Y
9 21.8 Y N
10 221 N Y
11 24 1 Y Y

12 346 Y Y
13 39.7 Y Y

6.2 MODAL CURVE FITTING

The next step in the analysis is the application of ERA
[12]. The ERA procedure is based upon the formation
of a Hankel matrix containing the measured discrete-
time impulse response data. The shift in this matrix
from one time step to the next is then used to
estimate a discrete-time state space model for the
structure. The next step in the procedure is the
determination of the order of the model to compute
(i.e., the number of modes in the model]. Typically,
this method produces many ‘computational’ modes
(i.e., modes which are generated by the curve fit, but
which have no physical significance), so it is
necessary to overspecify the model order by a large
number of modes. The common procedure is to keep
the minimum number of singular values needed to
accurately reproduce the Hankel matrix. A semilog
plot of the singular values of the Hankel matrix,
sorted from highest to lowest, is used to determine the
minimum number required.

6.3 DISCRIMINATION OF CURVE FIT RESULTS

The model resulting from the ERA analysis had many
modes, including computational ones, but it was
known from examination of the MIF and CMIF that
the data contains only about 13 modes. Thus, it was
necessary to apply some discrimination procedures to
select the modes that are physically meaningful.
There are three indicators developed specifically for
use with ERA [13]: Extended Modal Amplitude
Coherence (EMAC), Modal Phase Collinearity (MPC),
and Consistent Mode Indicator (CMI), which is the
product of EMAC and MPC. EMAC is a measure of
how accurately a particular mode projects forward (in
time) onto the impulse response data. MPC is a
measure of the collinearity of the phases of the

388



components of a particular complex mode. If the
phases are perfectly linear (i.e., either in phase or 180
degrees out of phase with each other), this mode is
exactly proportionately damped, and can then be
completely represented by a corresponding real mode
shape. Thus, EMAC is a temporal quality measure,
and MPC is a spatial quality measure. Typically, it is
reasonable to start with values of EMAC = 0.7, MPC =
0.7, and CMI = 0.5, and then see if all of the modes of
interest {as determined by MIF and CMIF inspection)
are preserved., In the current study, all of the 13
modes of interest passed this criteria, including all of
the modes below 20 Hz, so these values of EMAC,
MPC, and CMI were used as the cutoff values. Visual
inspection of the mode shapes was conducted for the
extracted modes. Modal assurance criterion (MAC) i1s
another useful tool for discriminating modes. The
synthesis of the FRF using the identified modes and
overlay onto the data can also be a somewhat useful
tool for determining the accuracy of the modal curve
fit. In the current case, the identified modal set

provided fairly accurate overlays onto the measured
FRF’s.

6.4 POST-CURVE FIT ANALYSIS

Once the basic ERA parameters had been determined
such that the modes of interest were identified and
passed the discrimination criteria, a Monte Carlo
analysis was performed to measure the statistical
confidence in the results of the identification. Using
the measured Coherence function, 1 standard
deviation uncertainty bounds were computed on the
FRF magnitude and phase using the formulas derived
by Bendat and Piersol [14]. These bounds represent
the estimated random variations on the FRF resulting
from the measured level of random noise in the
measurements according to the Coherence function.
These confidence bounds on the FRF were propagated
through the identification procedure using a Monte
Carlo analysis. The procedure is summarized as:

1) Add Gaussian random noise to the FRF’s using the

noise standard deviations computed from the
Coherence function. This additional noise represents a
realistic level of random variations in the
measurements.

2) Run the noisy FRF through the ERA identification
procedure and apply the modal discrimination using
the previously computed parameters.

3) Compute the mean and standard deviation of each
modal frequency, damping ratio, and mode shape
compormnent over the total number of runs.

4) Repeat steps 1, 2, and 3 until the means and
standard deviations in step 3 converge.

For the current study, the convergence took about 30
runs. This convergence determines the sufficient
sample size to provide significant confidence in the
statistical estimates.

The statistics computed on the test bridge data are
shown in Table 3. The first column contains the mode
number. The second column is the mean of the
identified modal frequency in Hertz. The third column
contains the standard deviation of the modal
frequency in Hertz (absolute deviation), and the fourth
column contains the standard deviation of the modal
frequency as a percentage of the mean (relative
deviation). The fifth column is the mean of the
identified modal damping ratio. The sixth column
contains the standard deviation of the modal damping
ratio (absolute deviation), and the seventh column
contains the standard deviation of the modal damping
ratio as a percentage of the mean (relative deviation).
None of the modes show a significant error in modal
frequency. Modes 3, 9, and 10 show a significant
error in modal damping ratio. None of these errors
were large enough to exclude the mode from the
identified modal set. However, the error in modal
damping ratio should be considered when performing
einalyses that use these values (e.g., time history
prediction or FRF synthesis). Also, recalling that
modes 9 and 10 were found inconsistently between
the indicator functions and have a significant amount
of spatial similarity as indicated by the MAC, it is not
surprising that they demonstrate a significant amount
of statistical uncertainty as well. It is possible that
these modes are poorly excited or that they are
spectrally close to a ‘tuned absorber’. An absorber is a
local vibration that can cause the data to appear as
though two separate modes are in close spectral
proximity. The spatially similar mode shapes support
this hypothesis, assuming that the location of the
tuned absorber does not coincide with one of the
sensor locations. These modes are kept in the set,
however, as a result of their high values of EMAC and
MPC.

__Table 3 : Statistical Analysis

If-tl_u;_ﬁ»g Hz) 1STO(Freq) [15T0 Fren (%) | Camp Ratio 1 S]U Damp. 1870 [)tl[ﬂll’[?ﬁl
A 7193 | 4890E-04 [ 0007 | 3372F.2 | B461ES 0251 |
L2 _BA22 1 7S18E.04 0.009 2 483F.2 6762E-5 | 0272 |
) 11615 | 6446603 [ 0055 S24BE-2 | 4411E-3 | _ 8.404
4 12435 | 4.734E.03 0038 .| 5A06E-2 | 2008E-4 0.548
5.1 12702 | 2576E-03 0020 1 2564F-2 | 2729F-4 |  1.064
£ 15000 | 5406E-03) . 0036 4038F-2 | 2780F-4 0.668
L 16233 | 7164E-03] 0044 | 3978F-2 5.083F-4 1278
L} 20305 A069E-03 L 0,018 2550E-2 | 19689F-4 0.780
-] 21807 | 1604F.01 0736 | 4103F.2 | 0009E.3 21702 _]
A0l 22078 | 6267E-02 0.284 3.264E-2 286E-3_| __7.003
11 24075 | 2500F-03 0.011 2617E-2 | _1579E-4 0.603
120 24550 | 1984E-02 1 0057 | 1B74E-2 | 5542F.4 3311
13 30,742 2636K-021 0086 1.090E-2 1.545E-4 2810
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Next, the results of the modal analyses conducted at
the University of Cincinnati Infrastructure Institute
and Los Alamos National Laboratory are compared.
Table 4 presents the identified modes from these two
different studies and the MAC values between them.

Table 4 : Frequency and MAC Comparison of UCII and
LANL Results

UCII Results LANL Results
After Removal After Removal
9/10/1996 Test 9/10/1996 Test
No. | Frequency (Hz) | MAC | Frequency (Hz)

1 7.14 0.999 7.193

2 8.06 0.999 8.121

3 852 - -

4 11.44 0.985 11,618

5 - - 12,433

6 12.67 0.999 12,702

7 15.12 0.962 15.091

8 16.27 0999 16,229

9 20.3 0.872 20.307

10 - - 21,794

1 21.92 0944 22113

12 24.03 0977 24,076

13 24.98 - -

14 28.52 - -

15 29.08 - .

16 30.99 - -

17 - - 34,55

18 . - 39.746

As can be seen from the table, the results show
differences especially after the 25 Hz range. This may
be due to differences in the way the modal
identification computations were conducted. The
modal flexibilities also show some inconsistencies as a
result of the missing modes in two sets. Since the
analysis at LANL was conducted immediately before
this paper was prepared, the differences between the
two result sets will be further investigated and
presented during the conference.

7. CONCLUSIONS

Complex Mode Indicator Function is used as the
parameter estimation algorithm in the analysis of the
experimental data of the test bridge. CMIF is
compatible with the concept of Multiple Reference
Impact Testing. Compared to the sophisticated
commercial algorithms, it minimizes the user
interaction and results are not greatly disturbed with
the shifts of the poles of the structure due to non-
stationarity caused by environmental effects. Results
obtained from the CMIF algorithm correlate with the
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static truck load test measured with displacement
transducers.

The results provided from the Los Alamos National
Laboratory researchers correlate reasonably well with
the UCII results in the first 24 Hz range. The data is
post-processed using the Eigensystem Realization
algorithm. It should be considered that type of
condensation used to reduce the data to match the
number of unknowns for an over-specified problem
like this might change the results. Therefore, there is
no unique answer to the problem. However, the best
answer can be sought depending on the objective of
the research. The correlation study will be conducted
rigorously between the two institutions in future
corroborations to get the best possible answer for the
future damage scenarios.

The quality control of the post-processed results
should be checked both in modal and flexibility space.
Any computational modes or problems in scaling can
be observed when the modal analysis results are
transformed to flexibility space. Therefore, modal
flexibility derived from the experimental data is also
used to verify the physical completeness of the
results,

Modal flexibility can be derived directly from the
Frequency Response Functions. This derivation does
not require unit-mass normalized modal vectors. In
order to get a close approximation of the flexibility
matrix, the modal truncation effects should be
minimized. Modal truncation on the flexibility is also a
function of load. Depending on the loading condition,
the required number of modes for a good
approximation may change. A new index is utilized for
Load Dependent Flexibility Convergence.

Comparisons are made of two data sets. Significant
differences in the mode shapes are observed. After
removal of one bearing plate, a local mode which does
not occur at the before removal case is observed.
Global modes of the bridge are not affected when the
MAC values are considered. Local modes in the
vicinity of damage are affected most. Frequency
change between the before and after tests are slim
and not indicative of the damage.

In order to preclude the non-stationarity in the data
set, tests are designed to be conducted within a short
period of time. However, these tests do not yield the
cross-terms between the measured and unmeasured
DOF’s. A specific load pattern i1s utilized by loading
each girder one at a time. This loading suppresses the
contribution of unmeasured deflection coefficients.
The resulting deflections are named as Bridge Girder



Condition Indicator. The difference in BGCI’s between
two tests before and dfter removal of the bearing plate
located the damage. In addition, quantification of the
damage is made successfully for a static truck load
test. The two static truck load test results also
correlate with the modal analysis results.
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